

Freeze-drying of Upcon[®] conjugates an alternative way to store the UCNPs in a powder form

Jenna Kaurala^b, Tuomo Suutari^a, Annika Eränen^a, Jarno Pusa^b, <u>Terhi Riuttamäki</u>^a

^aUniogen Oy (former Kaivogen Oy; Turku, Finland), ^bTurku University of Applied Sciences (Chemical Industry unit, Turku, Finland)

BACKGROUND AND MATERIALS

Motivation: Long shelf life of the product saves money in the industry

- Larger production batches and more flexible production scheduling
- · Less disposal of unused expired material

Typical stability of the Upcon[°] conjugates (stored in aqueous suspension): a few months to one year

- Nanoparticle core: Very stable inorganic material (NaYF₄:Yb,Er) when stored with fluoride ions¹⁾
- Biomolecules conjugated to the particles: More prone to aging
- Particle coating method and storage conditions also affect stability²⁾

Aim: Expanding the shelf-life of the Upcon conjugates by freeze-drying (storage in a powder form)

- Several Upcon coatings: Thin (<1 nm) or thick coating (12 nm) with either COOH- or $N_{\rm 3}$ -functionality
- Different biomolecules: Robust streptavidin (SA) and two delicate antibodies (Ab)

 Table 1. Follow-up of quality control parameters for Upcon-conjugates: Before / just after / 3-4 months after (SA- and Ab-conjugates) / 6 months after (only SA-conjugates) freeze-drying.

	Observed changes over time (gray:4 months, green: 6 months)								
	Coating type	Biomolecule	Stored	UCNP concentration	Aggregation	Detachment of biomolecule	Performance in assay		Proforable
							Non-spesific binding	Specific signal	storage form
	C1 - Thick (12 nm) - COOH	SA	in solution	Increases	-	-	-	-	Ok
			as dry powder	-	-	-	-	-	Preferable
	C4 - Thick (12 nm) - N ₃	Ab (two different)	in solution	-	-	Increases	-	Ab1: Less active	Depends on Ab
			as dry powder	-	Less colloidal originally	-	-	Ab2: - Ab1: -	Depends on Ab
								ADZ: Less active	
	C5 - Thin (<1 nm) - COOH	SA	in solution	Increases	Colloidality decreases *	-	Increases	-	
			as dry powder	-	-	-	-	-	Preferable
		Ab	in solution	Increases	Colloidality decreases *	-	-	-	
			as dry powder	-	-	-	-	-	Preferable

*Aggregation can be broken off with high-power ultrasound

RESULTS

- **Performance and aggregation** after freeze-drying the Upcon conjugates (Fig 1)
 - Functionality of the biomolecules was retained during the drying process (Fig 2)
- No particle aggregation was observed based on a sedimentation test
- Stability comparison: Powder form vs. aqueous suspension
 - Real-time stability testing: 4 months or 6 months (for Ab- or SA-conjugates, respectively)
 - All conjugates were functional after the storage period
 - Negative observations from each product were collected in Table 1
 - Thin coating (C5) aggregated strongly when stored in aqueous suspension while dried one remained colloidal
- Storage in ambient temperature instead of controlled storage condition (+4 °C):
 - Slightly compromised performance in heterogeneous assay at low analyte concentrations, but standard curve saturates at the same level

CONCLUSION

- All freeze-dried Upcon conjugates remained functional in the process and rehydration step was easy and immediate
- Recommended excipients to add in simple buffered solutions for drying process:
 - Minimum requirement for a decent pellet formation was BSA
 - Additional sugar (e.g. sucrose) had a positive effect by slowing down the detachment of biomolecules
- Generally, freeze-dried Upcon conjugates undergo less changes during the storage period
 - Certain coatings benefit freeze-drying more (thin C5-coating) than the others

REFERENCES

¹⁾ Lahtinen S. et al., J. Phys. Chem. C 2017, 121(1):656–665.
 ²⁾ Hlaváček A. et al., Microchim. Acta 2017, 184: 4159–4165.

Successful pellet

Collapsed pellet (undesirable)

Fig 1. Upcon-SA conjugates freeze-dried from a simple buffer containing (a) BSA and sucrose, (b) only BSA, (c) only sucrose, (d) without any excipient.

Fig 2. Heterogeneous sandwich assay to follow the performance of the Upcon-SA conjugates (with C5-coating) over time. Fresh (dashed line) and 6-months aged (solid line) conjugate stored in aqueous solution (green) or as dry powder (red).